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A GENERAL SYNTHETIC METHOD FOR 2,6-CYCLODECADIENONE SYSTEM
BY INTRAMOLECULAR ALKYLATION OF PROTECTED CYANOHYDRINS

Takashi TAKAHASHI,* Hisao NEMOTO, and Jiro TSUJI
Tokyo Institute of Technology, Meguro, Tokyo 152, JAPAN

Summary: 2,6-Dimethyl-(%,£)-2,6-cyclodecadienone (12), 3,7-dimethyl-(%,E)-2,6-cyclodecadienone

(15), 3,7-dimethyl-(z.,£)-2,6-cyclodecadienone (1§) were synthesized by intramolecular alkylation
of unsaturated cyanohydrin ethers.

The synthesis of medium and large rings by direct cyclization methodology continnues to be a
major challenge. Application of the cyanohydrin methodology to large rings has previously been
demonstrated in this 1aboratory.1) This paper extends this methodology to the class of medium
sized rings. Such a development is cleary significant since the chemistry of the medium rings is
significantly different from that of the large or normal rings.

The germacranes are well known as typical ten-membered sesquiterpenes.z) Most of germacranes
have the chemically and thermally labile (E,E)-1,5-cyclodecadiene system possessing oxidized
carbons at various positions as shown in Figure 1. Thus an efficient ring formation and the
stereoselective introduction of 1,5-diene are required for syntheses of ten-membered sesquiterpenes
However, previous approaches to ten-membered carbocycles involve indirect methods3) such as ring-
cleavage of bi- or tricyclic compounds4) and ring expansions based on Cope,s) oxy-Cope,6) and Cope-
C]aisen7) rearrangements. Anion-induced cyclization of epoxy sulfides is also reported,8 but the
jsomerization of double bonds takes place. Thus the acceptable synthetic methods for (&,£)-1,5-
cyclodecadiene are few. We wish to report here a general synthetic method for (£,E)-2,6-cyclo-
decadienones by intramolecular atkylation of cyanohydrin ethers.
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This cyclization has the following characteristic features. (1) High yields of cyclization
without undergoing intermolecular alkylation. (2) The carbanion acts only as acyl anion equiva-
lent without the isomerization of the double bonds. (3) It is possible to introduce the carbony]l
group at various positions by selecting cyclization positions.

The (E)-enals 4 and 8 were prepared stereoselectively starting from geranyl acetate 1 as

outlined in Scheme 1. The allyl alcohol 2a was obtained by the method previously reported. 10)

The palladium catalyzed a]]ylat10n]])
3 in 58% yield with retention of olefin geometry. The conversion of malonate moiety to the
tosylate, hydrolysis of T-ethoxyethoxy group, and oxidation of the resulting alcohol gave the pure
(E)-enal 4 in 34% overall yield from 3. While the enal 8 was obtained stereoselectively in the
following way. The Claisen rearrangement of the vinyl ether of 5 at 180°C gave the aldehyde 6 in
85% yield. The reduction of the aldehyde and the tosylation gave 7 in 80% yield. Hydrolysis of
the acetyl group and oxidation of the allyl alcohol gave the (E)-enal 8 in 67% yield. The (2)-
enal 9 was separated from a mixture of 8 and 9 (6 : 4), obtained by the acid-promoted isomeriza-
tion Sf the (£)-enal 8 The pure ena]s~4 8, and 9 were transformed into the protected cyano-
hydrins 10, 13, and 16 respecb1ve1y, without 1somer1zat1on of the olefins in three steps
(Me3SiCN/18-crown G,Tfj PhCHzN Me3 , ethyl vinyl ether/H 90% overall yield).

of dimethyl malonate with allyl acetate 2b gave the diester
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Scheme 1

Cyclizations of 10, 13, and 16 were carried out in the following way (Scheme 2). The protect
ed cyanohydrin (1 mmol) in THF {7 mL) was added, over 1 hour at 50-60°C under nitrogen atmosphere
to sodium bis{trimethylsilyl}amide (5 mmol) in THF (7 mL). After usual work-up and short column

chromatography, the cyclization products 11, 14, and 17 were obtained in 78, 85, and 84% yields
respectively. TLC of each crude mixture showed the presence of only the cyclization product.
The crude product 11 was converted to the enone 12 in 81% yield by acid treatment (PPTS/MeOH at
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40°C for 30 min), followed by aqueous base treatment (2% aq NaOH/Et20 at room temp for 5 — 10 min;
Condition A). Even a trace of other 1somers]3) could not be detected in the crude product 1315)

by NMR. The treatment of the crude product 1& with acid as above, followed by milder base treat-
ment (1% aq NaHCO3/Et20 at room temp for 60 min; Condition B) gave only the enone 1515) in 78%
yield. It is noteworthy that under the condition A, a mixture of the enone 15 (60% yield) and

18]6) (

25% yield) was obtained from 15. The crude product 17 was also converted to the pure
(z)-enone 1§]5 in 80% yield under the condition B.
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We are actively investigating further application of this cyclization method to the
syntheses of naturally occurring medium and Targe-membered terpenes.
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The regio-selective cyclization at a-position without (£ & z) isomerization of double bond
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observed here (19 - ll, 1§ - lﬂ, l§ - lz) is tentatively thought to be a consequence of the
metal chelating effect of the oxygen or the nitrogen atom as expressed by structures A or

B.14) Another reason is that placing an E double bond in eight membered ring (y attack
product) is highly improbable. Moreover the cyclization product C has no acidic proton,

hence the isomerization of the unsaturated cyanohydrin ether does not occur.
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G.Stork, L.Maldonado, J.Am.Chem.Soc., 96, 5272 (1974).
(E)-enone 12: IR(neat) 1680, 1620 cm'1; ]H NMR (100 MHz, CDC13) 6§ 5.80 (br t, J = 7.4 Hz,
- 1H), 4.59 (br t,J= 6.0 Hz, 1H), 1.70 (d, 4 = 1.0 Hz, 3H), 1.59 (br s, 3H);
]30 NMR (25 MHz, CDC]3) § 208.4, 141.3, 139.4, 131.0, 130.6, 38.9, 38.6, 28.7,
25.2, 16.4, 14.0: Mass m/e 178; Anal. calcd. for C12H]80: C, 80.85, H,
10.18. Found. C, 80.12, H, 10.15.
(E)-enone 15: IR(neat) 1675, 1605 cm™'5'H NWR (90 MHz, CC1,) 6 5.44 (br s, 1H), 4.78 (m,
1H), 1.89 (br s, 3H), 1.20 (br s, 3H); Mass m/e 178: HPLC retention time
(Rt) 17.2-19.0 min (Silica gel; SI-60-5 um, 7.5 o0.d. X 550 mm, flow rate
4.8 mL/min, 5% ethyl acetate in n-hexane}.
(z)-enone 18: IR (neat) 1680, 1630 cm'];]H NMR (90 MHz, CC]4) § 5.93 (br s, 1H), 4.88 (m,
- TH), 1.76 (br s, 3H), 1.43 (br s, 3H); HPLC (Rt) 12.7-13.6 min.
The isomerization of the less stable (£)-enone l§ to the more stable {2)-enone 1§ with base

treatment is known [see ref. 6) a)l.
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